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SUMMARY 

The boundary integral equation method constitutes the basis of a number of computer programs used for the 
solution of wave-obstacle interaction problems. For the case of obstacles in a constant depth fluid, the 
method assumes that the velocity potential at any point in the fluid may be represented by a distribution of 
Green’s function sources over the immersed surface of the obstacle. Application of the obstacle kinematic 
boundary condition gives rise to an integral equation which may be solved, using numerical discretization, for 
the unknown source strength distribution function. Subsequent evaluation of the discretized velocity 
potential permits evaluation of the hydrodynamic interaction parameters. 

A series of numerical solutions have been carried out for a range of substantially rectangular obstacles, in a 
two-dimensional domain, using varying levels of immersed profile discretization. The results, presented in the 
form of fixed and floating mode wave reflection and transmission, together with the motion response of the 
floating obstacle, demonstrate the significant sensitivity of the evaluated parameters to variations in the level 
of discretization. 

KEY WORDS Wave-source distribution Green’s function discretization 

INTRODUCTION 

A number of mechanisms give rise to the hydrodynamic forces and wave effects associated with the 
interaction between a fixed structure and a train of incident waves. The governing mechanisms are 
determined by the geometry and location of the obstacle, together with its size in relation to the 
incident wave field. If the characteristic dimension of the structure is significant with respect to the 
incident wavelength, sufficient to result in deformation of the ambient wave field, the waves 
undergo significant diffraction. The structure is thus subjected to a diffraction force in addition to 
the inertial force resulting from the mass displacement of fluid. It is assumed in such a regime that 
the drag force becomes insignificant and may be neglected, permitting the formulation of a 
potential theory problem. Consideration of the appropriate boundary conditions enables a 
solution to be obtained for the diffracted wave potential and subsequent evaluation of the 
hydrodynamic force components. If the structure is floating, additional boundary value problems 
are required for each degree of motional freedom, the solutions of which permit the evaluation of its 
components of motion together with the potentials relating to the waves generated by each mode of 
body motion. 

A number of methods have been employed for the formulation and solution of these boundary 
value problems but, with the exception of a few simple fixed obstacle geometries, no exact solutions 
are available and the required solutions must be obtained by numerical means. 
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The boundary integral equation method, involving the development of a surface integral 
equation which may be solved by discretization, has become firmly established in practice and 
constitutes the basis of a considerable number of computer programs used for the numerical 
solution of the wave diffraction and radiation problem. 

FORMULATION O F  THE PROBLEM 

Consider the motion of the two-dimensional system consisting of a long floating object partly 
immersed in an incompressible and inviscid fluid as indicated in Figure 1. The fluid is bounded by a 
fixed horizontal and impermeable bottom at y = - d ,  the immersed surface of the object denoted 
by T(x, y) = 0 and the mean free surface of the fluid at y = 0 which is assumed to extend 
longitudinally to infinity in both directions. Assuming the fluid motion to be irrotational, the flow 
field for an incident train of regular waves may be completely described by a velocity potential, 
defined in complex form as 

@(x, y ;  t) = Re [&x, y)e-'"'], 

where R e [  ] denotes the real part of the complex expression and o denotes the incident wave 
radial frequency ( = 2nf ) .  The time parameter t is understood to be real throughout. The additional 
assumption is made that the waves are of small amplitude and that the resulting harmonic body 
motions defined in Figure 1 are also of small amplitude, thus permitting the mathematical problem 
to be much simplified by linearization. 

When the body length is significant with regard to the incident wavelength, the incident waves 
undergo significant scattering or diffraction. The situation may therefore be conveniently 
considered in terms of a combination of two fundamental and related problems: 

(1) the scattering (or diffraction) problem of an incident wave train interacting with a fixed body; 
(2) the wave generation problem of a body forced to oscillate in otherwise still water. 

Resulting from the above mathematical linearization, these two motions may be superposed with 
the wave forces of the scattering problem providing the forcing function in the wave generation 
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problem, thus permitting expression of the potential as the sum of three separate components: 

0 =ow + 0 s  + OG, (2) 
where Ow is the known potential of the incident waves, Os is the unknown potential of the scattered 
waves and OG is the unknown potential of the waves generated by body motion. The following 
conditions are satisfied by each of the three components: 

(a) The Laplace equation 

V20(x,y; t )  = 0, where V z - - [ fx fYlT 
(b) The bottom boundary condition 

= O  at y = - d .  y; t) 
a Y  

(c) The linearized free surface boundary condition 

(d) The kinematic boundary condition on the immersed surface of the body 

(3)  

(4) 

where V, is defined by 

V, = Re[~,(x,y)e-'"'] on T(x,y) = 0, 

where v,(x, y) denotes the complex function which represents the spatial normal component of 
velocity on the immersed surface. Following the superposition postulations made previously, 
equation (6) may be subdivided into the following equations: 

aQw a@., 
-+-=O on T(x,y) = 0, 

an an 

(e) The potentials pertaining to the scattered and generated waves must, in addition, satisfy the 
far-field radiation condition guaranteeing that the waves are outgoing and have proper amplitude 
behaviour at infinity: 

where 4 ~ 4 ~  and $G respectively and k is the incident wave number (27c/L) defined by the 
dispersion equation 

a2 = gk  tanh (kd),  (9) 
where L is the incident wavelength. 
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THE INTEGRAL EQUATION FORMULATION 

It may be shown' that the velocity potential at any point in the fluid domain may be represented by 
a distribution of pulsating sources of unknown strength over a source boundary: 

n 

where x = (x, y) and represents a point in the fluid domain (field point), 6 = (a, b) and represents a 
point on the source boundary (source point), f(5) represents the unknown source strength 
distribution function and the integration is performed over the source distribution boundary. In 
order for the representation in equation (10) to be valid, the Green function (source potential) 
G(x, 5 ;  t )  must satisfy all the boundary conditions of the problem, given by equations (3), (4),(5) and 
(7), with the exception of the kinematic boundary condition on the immersed surface of the body. 

Such a function has been constructed by Wehausen and Laitone2 and is defined, in complex 
form, for the two-dimensional case as 

where 

271v cosh [k (d  + b)]  cosh [k(d + y ) ]  
vd + sinh2 ( k d )  90(Y? b) = k 

and v = a'/g and represents the deep water (kd 3 5) wave number. The real part of the Green 
function is defined in two alternative forms: 

The integral form 

where 
g1 =1n(r/d)+ln(r2/d)-2I1, 

r' = (x - a)' + (y - b)2, 

r ;  = (x - a)' + (y + 2d + b)2 

p + v e-pdcosh [p(d + b)]  cosh [p(d + y ) ]  cos [p(x  - a)] ePfid 

p sinh ( p d )  - v cosh ( p d )  

with f denoting the Cauchy principal value integral. 
The series form 

91 (x, y ;  a, b) = gob4 b) sin ( k  Ix - al l  

" 1  
m=l prn 

- 271 C - C, cos [p,(d + y)] cos [ p m ( b  + d)le-pmix-al, 

where pm(m 2 1) are the positive real roots of 

pm tan (p,d) + v = 0 
and 

p i  + v2 c = =  
p i d  + v2d - v '  m 
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It is generally accepted3 that the series form of the Green function is more efficiently evaluated than 
the integral form except in cases where Ix - a1 is small. 

Since (D and G are harmonic functions, equation (8) may be written in terms of spatial functions 
only: 

4M= Jsf(5)g(x,S)dS. (14) 

If the source distribution boundary is chosen to coincide with the immersed surface of the body, 
application of the kinematic boundary condition, equation (6), to equation (14) yields the 
following integral equations in terms of the scattered and generated potentials: 

where the last terms in the equations arise from consideration of the effect of a source at its own 
point of action and the integrations are performed over the immersed profilc of the body. 

NUMERICAL SOLUTION 

If the directions of motion are defined as surge = mode 1, heave = mode 2, pitch E mode 3 and, in 
addition, scattering = mode 4, equations (15) may be expressed using index notation as 

Equation (1 6) may be solved numerically, beginning with subdivision of the immersed surface of 
the body into N elements of length Arj(j = 1,2,, . . , N )  and identifying as node points the centroid 
of each element. The assumption may be made that the source strength distribution function f ( Q  is 
constant over each element. 

Since the regular parts of the Green function and its normal gradient oscillate with a wavelength 
of magnitude comparable with that of the incident wave, it is valid to assume constant function 
values over each element length providing the elements are small in comparison with the incident 
wavelength. 

Equation (16) may therefore be expressed in discretized form as 

The three modes of oscillation of the body may be defined thus: 

a,=a,e-'"', m =  1,2,3, (18) 
where 01, is a translation form = 1 and 2, a rotation form = 3 and a, is the corresponding complex 
amplitude of motion. 

It is convenient4 to decompose the generated wave potential (DG into three components 
associated with each degree of freedom and proportional to the modal displacement amplitudes: 
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Similarly, the normal velocity may be decomposed as 

where n, represents the outward normal component scalar of velocity on the immersed surface of 
the body. 

A little algebra involving equations (18)-(20) yields 

~- a4m(xi) - - ion,(x,), m = 1,2,3. 
dn 

From equation (7a) 

~ a$m(xi) - -~ a$w(xi), 
= 1,2,3, - 

an  an 

where $w is the potential of the incident wave, defined in complex form as 

where H is the incident wave height. Substitution of equations (21) in (17) results in the matrix 
equation 

where 

Bim = - ianm(xi) for m = 1,2,3, 

and dij is the Kronecker delta. Equation (23) may be solved for the unknown source distribution 
matrix [f], where f j m  = f m ( k j )  as defined in equation (17). 

The velocity potential may be evaluated using the discretized form of equation (14): 
N 

(bm(x i )  = C f m ( S j M X i r  S j Y j ,  i = 192,. . . > N .  (24) 
j =  1 

HYDRODYNAMIC INTERACTION PARAMETERS 

Using the equations of motion5 adapted for the two-dimensional case, in conjunction with the 
previously stated potential and velocity decompositions, yields 

(254 
P p.=- t j  lrIm($y))nidr> 
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where p i j  and lij  are the added mass and damping coefficients in the ith direction due to motion in 
the jth direction. 

Using the method detailed by Sarpkaya and I~aacson ,~  in conjunction with the well known 
Haskind relations,6 the exciting force components may be computed from 

Fi  = F  O i  e-iut, (26) 
where 

thus demonstrating the usefulness of the Haskind relations in that the evaluation of the exciting 
force components does not necessitate the prior evaluation of the scattered potential. 

The complex amplitudes of body motion may be subsequently evaluated from 
3 

FOi = C [ - a2(mij + p i j )  - ialij + c i j ] a j )  
j = 1  

where m ,  1 ,  m22 represent the mass of the floating body, m33 is the rotational moment of inertia of 
the floating body in the pitch mode, cZ2 = p,gL,, c33 = p w g V H 3 , p ,  is the mass density of water, 
L, is the waterline area per unit width of body, V is the displaced volume per unit width of body, H ,  
is the pitch metacentric height and all other c i j ,  mij are zero. If the body is subject to any spring 
restraints to prevent drifting or to simulate mooring conditions, the spring constants may be added 
to the c i j  terms. 

Defining the far-field reflection and transmission coefficients as the ratio of the reflected and 
transmitted wave amplitudes to the incident wave amplitudes, the coefficients may be evaluated 
from the asymptotic velocity potential expressions thus: 

where 

I ; ) =  - i j r  f ( s ) ( a ,  b)go(O, b)e("-l)"'" dl-, 

1;) = - i Ir f y ) ( a ,  b)go(O, b)e(n-l)ika dT . 

Note that R, T are the reflection and transmission coefficients, bR, BT are the associated phase 
shifts, ('), (*) denote components associated with the scattered and generated potentials respectively 
and j denotes components associated with the jth mode of motion of the body. 

BOUNDARY ELEMENT DISTRIBUTION 

In practice, the number of elements into which the source distribution boundary is subdivided is 
limited by available computer storage space. Apart from this physical limitation, the fact that the 
run-time for any particular solution is roughly proportional to the square of the number of 
elements emphasizes the importance of restricting the number of elements to the minimum 
required for an acceptably accurate solution. 
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To ensure an adequate representation of the object boundary subject to the above limitations, 
Hogben et al.’ have recommended the following guidelines, based on experience, for fixed three- 
dimensional objects: 

1. Elements should be concentrated in areas where the body geometry (slope or curvature) 
changes rapidly with position. 

2. Individual element dimensions should not exceed the local radius of curvature. 
3. No element dimension should exceed 1/8 of the incident wavelength. 
4. Element dimensions should change gradually between areas of high and low concentrations. 
5. The dimensions of an element should not be more than 50% greater than those of 

neighbouring elements. If several small elements surround a larger one, the accuracy is that 
associated with the large element, resulting in an inefficient distribution. 

In the case of two-dimensional floating bodies, the author is unaware of the availability of similar 
guidelines. However, it may be reasonably assumed that the principles remain the same. 

In the case of an immersed surface which is substantially rectangular, the following formulation 
has been adopted to comply with the above recommendations. Element parameters (see Figure 2) 
may be defined thus: 

maximum element length on a vertical side = amax, 
maximum element length on the base = b,,,, 
number of elements on the straight portion of each side = N,, 
number of elements on the straight portion of the base = 2N, + 1, 
number of constant length elements on each radial edge = N,, 
minimum element size = ymin, 
submerged edge radius = R. 

If it is assumed that the minimum element length occurs on the radial edges, it may be stated that 

minimum element length ymin = nR/2N, 

side elements 
The element distribution may be defined thus: 

Y?’ = amaxr 

y?) = amaxai - ’ ,  i = 1,2,. . . , N,, a < 1; 

base elements 

Y (ib) = bmax 

$1 = bmaXf i - l ,  j = 1,2,. . . , N,, b < 1; 

constant length radial edge elements 

where subscript i denotes the ith vertical element from the free surface, CI denotes the constant 
element length ratio pertaining to each vertical side, subscript j denotes thejth horizontal element 
from the centroidal axis, p denotes the constant element length ratio pertaining to the base and 
subscript c denotes a constant length element on a submerged radial edge. 

Starting from a specified minimum element length dependent on the number of constant length 
elements on the submerged radial edges, and a nominal element length ratio, the precise element 
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1- LENGTH, L, .-I 
Figure 2. Definitions for boundary element distribution 

length ratio is computed from an iterative procedure. If the same nominal element length ratio is 
used for both side and base elements, this results in a roughly symmetric increase in side and base 
elements away from the submerged radial edge of the body. Depending on the aspect ratio of the 
immersed surface, the computed element length ratios generally differ by only a few per cent either 
side of the nominal input value. 

RESULTS AND DISCUSSION 

Based on the foregoing analysis, solutions have been evaluated for three substantially rectangular 
obstacles withimmersedprofile aspect ratios of2,4and 8 respectively,fulldetails ofwhich are givenin 
the Appendix. 

The far-field reflection and transmission coefficients, for both ‘fixed’ and ‘floating’ mode, have 
been evaluated from equations (28). The motion response of the body, suitably non- 
dimensionalized with respect to the incident wave amplitude, has been evaluated from 
equation (27). In order to investigate the sensitivity of solutions to changes in numerical 
discretization of the immersed profile of the obstacle, the evaluations have been carried out for a 
range of values of the element length ratio (ELR) in conjunction with a specified number ( N , )  of 
constant length radial edge elements and vice uersu. Element distribution details for each obstacle 
are given in the Appendix. Since the hydrodynamic interaction parameters depend essentially on 
the relative size of obstacle and incident wave, solutions have been evaluated over a suitable range 
of values of the non-dimensional diffraction parameter L,/L. 

For reasons of brevity, graphical presentation of results has been limited to those pertaining to 
obstacle number 2 (see Appendix) with an immersed profile aspect ratio of 4. These can be seen in 
Figures 3-8. 

Fixed mode 

In general for the three obstacle configurations investigated, the fixed mode reflection and 
transmission coefficients exhibit very little sensitivity to changes in discretization level throughout 
the whole range of diffraction parameter values. Notwithstanding a slight increase in 
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discretization-related sensitivity with decreasing obstacle draught, the solution variation resulting 
from a substantially increased level of discretization (see Tables I1 and 111) can be regarded as 
insignificant for all practical purposes. It would thus appear that the three-dimensional 
discretization recommendations of Hogben et ~ 1 . ~  apply equally to two-dimensional fixed 
obstacles. 

As first pointed out by John,8 the integral equation develops eigenfunctions for surface-piercing 
obstacles at certain values of the diffraction parameter L,/L. At these 'irregular' frequencies, each 
eigensolution represents a non-trivial source distribution which leaves the external flow field 
undisturbed and is a numerical rather than a hydrodynamic feature resulting from coincidence of 
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Figure 3. Fixed obstacle reflection and transmission ( N ,  = 4; ELR variable) 
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Figure 4. Fixed obstacle reflection and transmission (ELR = 0.85; N ,  variable) 
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source and obstacle boundaries. Examination of the results for all three obstacles indicates that the 
divergence of transmission coefficients with increasing diffraction (Figures 3 and 4) is attributable 
to the proximity of the first irregular frequency and is not diffraction-related. The results show 
clearly that the effect of such numerical instability can be reduced by increasing the level of 
immersed profile discretization as first indicated by Frank.’ 

Floating mode 

The results presented in Figures 5 and 6 demonstrate clearly that, notwithstanding the difference 
in overall behavioural trends, the floating mode reflection and transmission coefficients are 

11 
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Figure 5. Floating obstacle reflection and transmission (N, = 4; ELR variable) 

11 

O.! 

( 
1 0.2 0.3 0.4 0.5 

Figure 6. Floating obstacle reflection and transmission (ELR = 0.85; N ,  variable) 
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0.1 0.2 0.3 0.4 0.5 

Figure 7. Floating obstacle motion response ( N ,  = 4; ELR variable) 
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0.1 0.2 0.3 0.4 0.5 

Figure 8. Floating obstacle motion response (ELR = 0.85; N ,  variable) 
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significantly more sensitive to changes in discretization level than the equivalent fixed mode results. 
Since the discretized solution of the integral equation entails the use of a common coefficient 
matrix, it must be concluded that the increased sensitivity is attributable to the three additional 
degrees of freedom associated with the floating mode. The general trend of floating obstacle 
solutions in Figures 5-8 indicates that, unless the level of immersed surface discretization is 
considerably increased from that employed in this study, the errors which may be associated with 
each solution are greater than would be acceptable for practical purposes. Apart from the possible 
introduction of numerical instability due to matrix ill-conditioning, the substantially increased 
computer memory and time requirements resulting from such an increase in discretization level 
would render use of this method largely impracticable. In order to obtain solutions which are 
accurate within acceptable tolerance limits while maintaining computer requirements at a 
practicable level, the use of higher-order (linear and quadratic) elemental source strength 
distributions is therefore suggested for the analysis of floating obstacle hydrodynamics. 

Figures 7 and 8 illustrate two interesting trends which pertain to the motions of all three obstacle 
configurations investigated: the discretization-related sensitivity of the interrelated surge and pitch 
solutions increases consistently with increasing wave diffraction, while heave solution sensitivity 
increases within frequency domains adjacent to the obstacle resonant frequency; heave solutions 
are consistently more sensitive to changes in element length ratio than to changes in radial edge 
element density, while the converse is true for surge and pitch solutions. This would suggest that, 
for a given value of the diffraction parameter, the level of immersed profile discretization required 
to produce solutions of equivalent accuracy is different for each mode of motion, thus providing 
further indication of the need for higher-order source strength distributions. 

CONCLUSIONS 

1. The Green function integral equation method, assuming constant elemental source strength, 
gives solutions within acceptable tolerance limits for fixed obstacle hydrodynamics in a two- 
dimensional domain. 

2. For the case of substantially rectangular fixed obstacles, a considerable saving in 
computational time and memory requirements may be effected by the use of a non-uniform 
distribution of elements over the immersed profile of the obstacle, subject to the 
recommendations contained herein. 

3. For substantially rectangular floating obstacles, the assumption of constant elemental source 
strength results in insufficiently accurate solutions at practicable levels of immersed surface 
discretization, indicating the need for higher-order (linear and quadratic) elemental source 
strength distributions. 
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APPENDIX. OBSTACLE DETAILS AND ELEMENT DISTRIBUTION DATA 

Obstacle details 
The numerical study presented in this paper was carried out in conjunction with an experimental 

investigation of the behaviour of floating obstacles in regular waves." Owing to the nature of the 
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experimental apparatus, the horizontally acting mass and stiffness parameters in equation (27) 
include additional components of mass and spring restraint stiffness respectively. Full details are 
given in Table I. 

Table I. Obstacle geometric and inertial details 

Body number 1 2 3 

Length (m) 
Draught (m) 
Immersed surface aspect ratio 
Immersed edge radius (m) 
Centroidal y co-ordinate (m) 
Metacentric height (m) 
Horizontally acting massjm width (kg) 
Vertically acting mass/m width (kg) 
Moment of intertia/m width (kg m2) 
Horizontal spring restraint/m width (N m I )  

Still water depth (m) 

0.96 
0.48 
2 
0.12 

- 0.283 
0.208 

497.9 
458.5 
26.59 

371.9 
1.2 

0.96 
0.24 
4 
0.06 

- 0.118 
0.317 

270.8 
231.4 

14.14 
278.9 

1.2 

0.96 
0.12 
8 
0.03 
0.034 
0,552 

153.7 
114.3 
10+30 

185.9 
1.2 

Element distribution data 

Table 11. Number of immersed surface elements 
( N ,  = 4 throughout) 

Body Element length ratio 
number 

0.50 0.70 0.99 

1 17 21 37 
2 19 25 55  
3 21 29 87 

Table 111. Number of immersed surface elements 
(ELR = 0.85 throughout) 

Body 
number 

number of elements per radial edge 

2 4 8 
~ 

1 15 27 45 
2 21 33 53 
3 27 41 62 
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